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Abstract

In this paper an experiment is presented in which two mobile robots de-
velop a shared lexicon of which the meanings are grounded in the real world.
The robots start without a lexicon nor shared meanings and play language
games in which they generate new meanings and negotiate words for these
meanings. The experiment tries to find the minimal conditions under which
verbal communication may begin to evolve. The robots are autonomous in
terms of computing and cognition, but they are otherwise far simpler than
most, if not all animals. It is demonstrated that a lexicon nevertheless can be
made to emerge even though there are strong limits on the size and stability

of this lexicon.

1 Introduction

Most research on the evolution of language concentrates on the emergence of syntax
(Knight et al. 2000). But, one of the first and possibly most important prerequisites
for the evolution of human languages is that humans evolved the capability to form
symbols (Deacon 1997). This can be inferred from the fact that human language
is highly symbolic. The question how symbolic communication emerged is often
overestimated in its complexity and it could be argued that the transition towards
syntactic communication may not be so difficult once symbolic communication is
in place as shown by simulations on the emergence of syntax, e.g., (Kirby 2001).
Although communication as such does not need to be symbolic - ants for instance

communicate non-symbolically -, humans tend to communicate with symbols. The



ability to form, manipulate and interpret symbols is what makes humans cognitive
agents. This is conform the physical symbol system hypothesis (Newell and Simon
1976). Humans think, reason, act and communicate in symbols. However, sensation
of the world is mainly a non-symbolic event. Yet humans are very well capable
in constructing symbols from these non-symbolic events. Moreover, humans are
possibly the only known species that learn a symbolic communication system.

There are other species that have symbolic communication, but this is most likely
innate, for instance, the alarm calls of vervet monkeys (Seyfarth and Cheney 1986).
Nonhuman species that have learned communication systems tend to communicate
non-symbolically. Although some scientists believe that human symbolic commu-
nication is innate too, many others believe that these symbols are learned (Bloom
2000; Ellman 1993; Tomasello 1999). In this paper the assumption is adopted that
the evolution of symbolic communication can be viewed as an adaptive complex dy-
namical system that evolved culturally in a similar way ant paths are formed (Steels
1997). Words and meaning are thought to co-evolve based on three mechanisms:
(cultural) interaction, individual adaptation and self-organisation. Based on these
mechanisms agents interact with their environment in order to sense their environ-
ment and to communicate. They adapt their memories to develop word-meaning
associations about things they sense. Together, the interactions and adaptations
ensure a self-organisation of a lexicon that is grounded in reality. One of the biggest
unresolved questions concerning the development of grounded symbols is how can
agents learn what is meant with the utterances of speakers? This question is relevant
for both artificial agents and humans.

In the past decade different aspects of language evolution have been studied
computationally, for an overview see, e.g., (Briscoe 2001; Cangelosi and Parisi 2001;
Steels 1997). Most of this work is based on the adaptive complex dynamical systems
approach. The studied aspects include simulations on lexicon formation (Hurford
1989; Steels 1996a; Oliphant 1999), meaning formation (Steels 1996b), phonetics
(De Boer 2000; Redford et al. 2001), concept formation (Cangelosi et al. 2000;
De Jong 1999) and the emergence of syntax (Hashimoto and Tkegami 1996; Kirby
2001). In addition some experiments on physical robots have been done to investi-
gate the emergence of lexicons that are grounded in reality (Steels and Vogt 1997;
Steels et al. 2002; Steels and Kaplan this issue; Vogt in press).

This paper is based on the robotic experiments reported previously in (Steels
and Vogt 1997; Vogt 2000b). In these experiments two minimal autonomous robots

try to develop a set of symbols that are grounded in reality. Initially, the robots



have no symbols at all, these are all constructed during the experiments. The term
minimal autonomous robots is used to indicate that the experiments are done with
autonomous robots, which have a very limited physical architecture and operate in
a very limited environment. It has been shown in the previous publications how
these robots could develop such a set of symbols. This paper investigates what the
minimal conditions are for these robots to develop a shared set of grounded symbols,
where the main focus is on physical conditions. In the end these conditions may shed
light on why humans can develop a shared and grounded symbol system very well,
while other species cannot. Other conditions relating to, for instance, population
dynamics, learning abilities, parameter settings and the impact of non-verbal cues
have been investigated elsewhere, see, e.g., (Steels et al. 2002; Vogt 2000b; Vogt
2001).

The conditions that are investigated basically involve conditions regarding the
physical bodies of the robots, their sensorimotor skills and their environment. In
most research, such conditions are assumed to be given and are not part of the
experimental setup. In embodied systems, such as robots, humans and other liv-
ing animals, these conditions are considered to be extremely important. As it is
assumed that language, and cognition in general, is both embodied and situated
- conform (Barsalou 1999; Clancey 1997; Lakoff 1987; Pfeifer and Scheier 1999)
-, it is important to investigate the impact of such conditions when investigating
the origins and evolution of language. One reason is that the nature of symbols
acquired by embodied agents depends to a high degree on the architecture of their
bodies (Barsalou 1999; Lakoff 1987). It would therefore be naive to expect that
robots with minimal bodies will acquire human-like symbols. In addition, because
the symbols are acquired from the interactions of agents with their environment,
both the sensorimotor skills of the agents and the complexity of the environment
influence the ability to ground symbols as well as the nature of these symbols. That
these factors are crucial can also be seen in the research with the Sony AIBO - a
four legged pet robot (Steels and Kaplan this issue) and with the LEGO robots
used in (Billard and Hayes 1997; Billard and Dautenhahn 1999). In both studies
experiments are done in which more or less minimal autonomous robots develop a
shared set of grounded symbols.

To deal with a dynamical changing environment and the instability of the robots,
the experiment is designed following the behaviour-based approach towards robotics
(Arkin 1998; Brooks 1990; Steels and Brooks 1995). According to this approach

behaviours - including symbolic communication - are acquired or designed from the



bottom-up. The approach strongly relates to the situated view of cognition.

This paper is organised as follows: The next section will briefly introduce the
definition of symbols that has been adopted for this work. Section 3 will explain
what a minimal autonomous robot is and briefly indicate the consequences of work-
ing with such robots with respect to bootstrapping grounded symbols. The language
game model by which the robots develop a lexicon is described in section 4. Section
5 presents some experimental results, which are discussed in section 6. Finally,

section 7 gives conclusions.

2 Semiotic symbols

When robots try to develop a shared lexicon of which the meaning is grounded in the
real world, they need to solve what Harnad (1990) has called the symbol grounding
problem. The symbol grounding problem deals with the question how seemingly
meaningless symbols become meaningful in the real world (Harnad 1990). This
problem is fundamental when symbols are viewed in the traditional sense (Clancey
1997; Pfeifer and Scheier 1999). In the traditional sense symbols are sometimes
names for categories (Harnad 1993) or sometimes associations between names and
meanings as in the Saussurean sign (De Saussure 1974)1.

In this paper the definition of symbols provided by the theory of semiotics as
introduced by Peirce (1931) is adopted. According to Peirce, a symbol can be
viewed as a sign when certain conditions are met. A sign in the Peircean sense

consist of three elements (Chandler 2001):

Representamen: The form which the sign takes (not necessarily material).
Interpretant: The sense made of a sign.

Object: To which the sign refers.

Rather than using Peirce’s terms, the terms adopted in this article are form
for representamen, meaning for interpretant and referent for object. According
to Peirce, a sign becomes a symbol when its form, in relation to its meaning is
arbitrary or purely conventional. As a consequence, the relationship must be learnt
(Chandler 2001). The relation can be conventionalised in language. To distinguish
this definition of symbols from the traditional definition, they will be called semiotic

symbols.

1Tn Saussure’s terminology, the name is called signifier and the meaning is called the signified.
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Figure 1: A semiotic triangle shows how a referent, meaning and form are related

as a sign.

How the three units of the sign are related is often illustrated with the semiotic
triangle as introduced by Ogden and Richards (1923) and shown in figure 1. It
is assumed that the meaning of a semiotic symbol depends on how the relation
between form and referent is established by the agent. The meaning is represented
by a memorised category that becomes activated through the interaction of an agent
with the referent and form. Referents are considered as real world entities, which
could be physical objects, actions, features like colours, abstract notions or even
other semiotic symbols. In this paper only physical objects will be considered as
referents; however, most of the discussions will apply to other notions of referents
as well. Forms are in principle arbitrary of shape, so they could be anything.
In communication systems the forms include gestures, spoken utterances, written
forms, etc. In the robotic implementation these are strings of letters taken from the
English alphabet.

Philosophically, it could be argued that a semiotic symbol is per definition
grounded, because the symbol already has a meaningful intrinsic relation with the
referent, and hence with the real world, see (Vogt in press) for a discussion. Thus
the symbol grounding problem is perhaps not a philosophical problem, but only a

technical problem that focuses on the construction of semiotic symbols.

3 Minimal autonomous robots

Minimal autonomous robots are physical robots that operate autonomously in a
certain minimal environment and that have a minimum of sensorimotor equipment
with respect to the task at hand. The robots are autonomous in the sense that their

behaviour is not controlled by a human?.

2In the experiment the human experimenter does intervene sometimes in order to speed up

the experiment. However, these interventions do not influence the autonomy of the robots with



Figure 2: One of the robots that is used in the experiment.

The environment is minimal in terms of its complexity. It is a closed squared
arena of 6.25m? with a flat surface. The objects are four light sources placed at
different heights and which emit light through a narrow horizontal slit. The ambient
lighting conditions change over time, for instance because the intensity of daylight
fluctuates. The objective of the experiment is that the robots develop a shared set
of semiotic symbols referring to the light sources.

Using minimal robots means that no sophisticated robots such as humanoids
or fine-tuned machines with state-of-the-art high-tech sensorimotor equipment are
used. The robots’ physical bodies come closer to those of insects, but are far more
limited.

For the experiment two LEGO vehicles, equipped with sensors, motors, a radio
module and an on-board computer are used, see figure 2. The robots have very
limited sensory capabilities, consisting of light sensors (LDRs), which only detect
the intensity of incoming light. The light sensors are mounted at different heights,
corresponding to the light sources in their environment so that these can be dis-
tinguished properly. In addition to the light sources, the robots have infrared (IR)
sensors and bumpers that are used for obstacle avoidance and for control of their
physical behaviour, which is necessary to interact with each other and their envi-
ronment. All these sensors are unreliable in the sense that they are subject to a lot

of noise that comes both from the environment and the electronic hardware.

respect to the objective of the experiment.



Two wheels that are independently driven by two motors, control the robots’
movements. To ensure stability, the robots have also a caster wheel. The motors
that drive the robots are connected to the wheels by a series of gearings. This whole
motor system is unreliable, because the gears are subject to wear, the motors to
noise and the wheels to slippage and friction on the flat surface.

The physical behaviours of the robots are synchronised using the radio module.
This module is also used to transmit data to a stand alone PC.

This stand alone PC is a Pentium PC that potentially allows more complex
computing than an insect brain. This PC is used for most of the cognitive process-
ing, because the on-board computational resources are not sufficient. The physical
behaviours required for the robots’ sensing is processed on-board and the symbol
formation and communication is processed on the PC. One advantage is that this
further speeds up the experiments. Off-line processing of sensorimotor data is not
uncommon in the field of evolutionary robotics and yield results that are more
consistent with reality than simulations (Lund et al. 1997).

As a consequence of using such limited and noise-sensitive sensors and motors,
the robots have poor sensorimotor skills. For instance, when a robot senses the
same light source on different occasions, the sensation might not be exactly the
same. Or when a robot rotates around its axis one full circle, the time they take on
different occasions will most likely vary and the circle will hardly ever be exactly
360 degrees. The speed of a robot is often not constant, although the motors are
given a constant signal. These are just some examples of the poor sensorimotor
skill; many more exist.

Given that the robots operate in a minimal environment and have minimal
bodies, it would be wrong to expect that the robots could be able to acquire semiotic
symbols that are similar to the symbols used in human languages. The categories
such minimal robots can construct are limited in the way the robots can perceive
and interact with their environment. For instance, the robots have no means to
sense the colour or shapes of objects. Hence they will not be able to form concepts
relating to colour of shape.

In communication the interaction between agents requires a sufficient amount
of coordinated behaviour, for instance, in order to establish joint attention. The
use of minimal robots with unreliable sensorimotor skills cause these robots to have
extreme difficulties in coordinating their behaviour. As a consequence, the robots

have a limited capability to develop a shared lexicon.



4 The model

The experiments are based on the language game model that was introduced by
Steels (1996a). In a language game, two agents - a speaker and a hearer - try to
convey the meaning of some referent by exchanging a word-form. When the agents
fail, they can adapt their individual lexicons in order to improve their performance
on future occasions. By playing a series of language games, a lexicon emerges that
is shared on a global level. At the start of each experiment, the agents have no
categories in their ontologies and their lexicons are empty. Both private lexicons
and ontologies are constructed during the experiments.

Three different language games have been implemented on the minimal au-
tonomous robots: the guessing game, the observational game and the selfish game.
The games mainly differ in how both agents agree on the reference of the commu-
nication. In the guessing game, the hearer tries to guess what referent the speaker
tries to convey. Corrective feedback is used to verify whether they succeed in do-
ing so. The guessing game is also implemented in the Talking Heads experiment
(Steels et al. 2002). In that experiment, the robots are embodied as pan-tilt cam-
eras places on tripods and the environment contains geometrical figures pasted on
a white board that have to be named.

In the observational game, the speaker informs the hearer what referent is the
topic of the game prior to the verbal communication, thus establishing joint atten-
tion. Corrective feedback is not used to verify whether both agents communicate
about the same referent as they already established joint attention.

In the selfish game, neither corrective feedback, nor joint attention is established.
Both agents just infer the meaning of the verbal communication by counting the
co-occurrences of word-forms and meanings.

In this paper the observational game will be presented in more detail. The
other games will be discussed briefly in section 6. In short, the observational game

is organised as follows:

1. The robots get together and stand close to each other with their backs facing
each other. One robot arbitrarily takes up the role of speaker, the other

becomes the hearer.

2. Each robot rotates around its axis to sense its environment one by one. As
the robots are not located at the same position, the resulting spatial views

differ for the two robots.



3. The sensing is segmented such that the sensory data relating to the sensing of

a light source are extracted. This segmentation results in a set of segments.

4. From the segments feature vectors are extracted. Each segment can then
be described by a feature vector that represents the sensory data by certain
features. The set of resulting feature vectors constitutes the context of the
game. Due to the differences in spatial views, the context of the speaker

typically varies from the context of the hearer.

5. The speaker of the game selects an arbitrary feature vector from the context
as the topic of the game. It informs the hearer which referent relates to the

topic. This way joint attention is established.

6. Both speaker and hearer try to find a category that distinguishes the topic
from all other feature vectors in their context. This is done by means of
the discrimination game. When no distinctive categories can be found, new

categories are constructed.

7. The speaker, when it finds a distinctive category tries to name this category
by searching its lexicon for form-meaning associations that are consistent with

the distinctive category.

8. The hearer, when received the utterance, tries to interpret the uttered name
in relation to the topic. It does so by searching its own lexicon for associations

that are both consistent with the uttered name and the distinctive category.

9. If the hearer finds a consistent association, the observational game succeeds.

Otherwise it fails. Both robots know the outcome of the game.

10. Depending on the outcome of the game, the robots adapt their lexicons. New
forms may be constructed, existing ones may be adopted and the associations

between forms and meanings may be strengthened or weakened.

The above outline is a very brief description of the observational game of which
some parts will be discussed in more details below. The reader interested in the

technical details is referred to, e.g., (Vogt 2000b; Vogt in press).

4.1 Sensing, segmentation and feature extraction

The robots need to get together at close distance in order to detect their environment

as similar as possible. In previous experiments, such as reported in (Steels and
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Figure 3: The spatial view of two robots acquired during the sensing event for one
observational game. The intensities of the four light sensors are plotted on the
y-axis, the time is plotted on the x-axis (the time is given in PDL units, each unit

is 755).

Vogt 1997), the robots did this completely autonomous. However, this behaviour
took on the average 2 minutes for each language game. As an experiment may
need thousands of language games, this is very time consuming. To speed up the
experiments, the experimenter intervenes to bring the robots close to each other
by hand. Such interventions do not influence the fundamental properties of the
experiment, because the essential part of a language game follows after the robots
stand close to each other.

After the robots come together and stand opposite of each other, they start
sensing their environment to obtain a spatial view that forms the basis of the context
of the observational game. The robots sense their environment by rotating around
their axis twice, while they record the intensity of the four light sensors during the
middle 360 degrees®. Figure 3 shows the result of a sensing event for both robots
during one observational game. Figure 3 (a) clearly shows four peaks wherever the
first robot detected a light source. In each peak a different sensor reads the highest
intensity. The sensor that reads the highest intensity corresponds in height to the
light source that caused the sensor’s stimulation. The robots are not aware of this
information. As figure 3 (b) shows, the robots do not acquire the same spatial
view. This is due to the fact that the robots are positioned at different locations.

In this case, the second robot did not clearly detect all four light sources because,

3Previously the robots only rotated once (Steels and Vogt 1997), but it has been found that

the on- and off-set of rotation was a large source of noise.
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for instance, the first robot may have obscured the visual field. As a result, the
robots will not be capable of constructing a highly similar context.

The sensing results in a spatial view of the robots’ surroundings, which is de-
scribed by a set of raw sensory data that may vary in length for the two robots
and for different games. In order to identify the different light sources from this
data set, the robots extract connected regions that correspond to a peak. Each
connected region is called a segment and is represented, again, by the raw sensory
data that has been measured within this region. As the regions may differ in size,
the segments differ in size. It is assumed that each segment corresponds to the
sensing of a light source.

In order to have a computationally manageable categorisation, each detected
light source should have a consistent representation; the segments do not provide
this. To come with a such a representation, a feature vector is constructed from the
segment. It is possible to design feature vectors such that they already bear some
useful information concerning the sensory data in the segments. Humans and other
robots such as the Talking Heads, for instance, extract features that contain infor-
mation concerning the colour of a segment (in terms of, e.g., hue, saturation and
brightness), the size, the spatial location etc. The minimal autonomous robots, how-
ever, have sensors that can only detect the intensity of light. Each robot therefore
extracts features by looking within a segment for the highest measured intensities
for each sensor. These values are then divided (or normalised) by the maximum
measured intensity within the segment of all sensors. This way, the sensor that has
measured the highest intensity within a segment will yield a feature with a value
of one; while all other sensors will yield features lower than one. Thus a feature
vector is constructed for each segment where each feature in the vector is a value
that relates to the maximum intensity of a sensor in that segment.

The way features are extracted is extremely important, because good features
can already contain a lot of information about referents. Having feature vectors
that already bear some invariant information allows more consistent categorisation
and naming. In (Steels and Vogt 1997), for instance, the robots extracted features
corresponding directly to the absolute intensities of the light sensors, hence they
also contained distance information. Since distances between a robot and a light
source vary a lot on different occasions, the feature vectors vary a lot too. This, in

turn, leads to inconsistent categorisation and much confusion amongst the robots.

11



4.2 Topic selection

When the robots acquired a context for the observational game, the speaker chooses
an arbitrary feature vector as the topic of the game. The speaker then informs the
hearer what referent corresponds to the topic, so that both robots know what the
topic is. This way the robots establish joint attention.

The idea is that the speaker points at the referent and the hearer tries to find
out what the speaker is pointing at. This all seems reasonable, but here a ma-
jor limitation of the minimal robots becomes apparent. Implementing pointing
behaviour physically on the robots was extremely difficult and several attempts
failed. In (Steels and Vogt 1997), for instance, it was implemented by having the
speaker orient in the direction of topic. While the speaker rotated in that direc-
tion, four perpendicular beams of infrared were emitted, such that the hearer could
approximate the angle at which the speaker was looking. This worked well under
the condition that both robots were initially facing each other perfectly at close
distance. However, slight disturbances in the initial orientation of the robots al-
ready leads to failures. As the sensorimotor skills of the robots are unreliable, they
were most of the time not facing each other perfectly. In the end, all attempts to
implement some kind of pointing behaviour physically failed.

Joint attention is therefore simulated by having the robots inspect each other’s
internal states. The speaker presents the hearer the feature vector of the topic. In
turn, the hearer selects from its context the feature vector that best matches the
given vector as the topic and joint attention is established. Although this works
reasonably well, sometimes the hearer did not detect the speaker’s topic. In such
cases, the hearer may have selected a different topic than the speaker. Naturally,
this implementation is far from plausible - agents are not supposed to have access to
each other’s internal states. It has been implemented this way in order to study the
bootstrapping of semiotic symbols further under the assumption that joint attention

could be implemented physically.

4.3 Meaning formation

The meaning formation is based on the discrimination game model (Steels 1996a).
Below follows a brief description of the discrimination game, which is slightly altered
from the exact implementation for reasons of clarity. For exact details, consult, e.g.,
(Vogt 2000b; Vogt in press).

In order to find a distinctive category, all the feature vectors are categorised.

12



Categories are represented as prototypes (or points) in a feature space, which is
the space that is spanned by all possible feature vectors that a robot can acquire.
Categories are defined as regions in this feature space in which all points are nearest
to this prototype. A feature vector is categorised with that category for which the
feature vector lies within the region of the category. Or in other words: a feature
vector is categorised with the category for which the prototype is nearest to the
feature vector.

A category is distinctive when it is a category for the topic, but not for any
other feature vector in the context. When a distinctive category is found, the
discrimination game is a success and the prototype of this category is shifted towards
the feature vector of the topic. By shifting the prototype the category becomes a
more representative sample of the feature vectors it categorises.

The discrimination game fails when no distinctive category is found. In this case
a new category is added to the ontology. The feature vector of the topic is taken as
the prototype of this new category. Recall that initially, the ontology is empty, so
this way the discrimination game controls the construction of categories.

To allow both general and specialised categories, each robot has a number of
feature spaces at its disposal in which the density of categories differ. The categories
in the more dense feature spaces are more specific, while the categories in less dense
spaces are more general. The robots play a discrimination game for each feature
space of which they have six available in the experiment. Hence, the meaning
formation could result in a set of total of six distinctive categories. This property
allows the robots, in principle, to categorise their sensing by their superordinate
and subordinate categories. For instance, if the robots were to categorise a dog,
they would be able to categorise them both by its superordinate category dogs and
by its subordinate category, e.g., bulldog.

The way categories are represented is not extremely important for the discrimi-
nation game to work (De Jong and Vogt 1998; Vogt 2000b). The Talking Heads, for
instance, use binary trees (Steels et al. 2002) and De Jong uses binary subspaces
(De Jong and Vogt 1998; De Jong 2000). For the minimal autonomous robots a
prototype representation is used as they form a more plausible representation than
binary distinctions (Lakoff 1987; Rosch et al. 1976). Prototypical categories can
be viewed as convex regions inside the feature space and thus resemble conceptual
spaces (Gardenfors 2000).

It is important to notice that the discrimination games are played by each robot

individually, just as the sensing, segmentation and feature extraction. This way,
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each robot will develop its own ontology of categories that, although perhaps similar,
differs from the ontology of another robot. The discrimination game will thus result

in different distinctive categories for each individual robot.

4.4 Producing an utterance

Once the speaker acquired one or more distinctive categories, it will try to find a
matching form-meaning association that it has stored in its lexicon. The lexicon
of the robots is a set of associations between a form and a meaning of which the
strength is given by a score. The meaning corresponds to a certain category the
robot has stored in its ontology and that has been associated with a form.

For the production, the speaker orders the distinctive categories according to
some preference criteria. These criteria tend to prefer general categories that have
been used successfully in previous games. One by one, the distinctive categories
are selected and the speaker searches in its lexicon for associations of which the
meaning corresponds to that distinctive category. This may yield more than one
association, because meanings can be associated with several forms and vice versa.
If the speaker finds one or more matching associations, it selects that association for
which the score is highest. If no association is found, the speaker explores the next
distinctive category until it finds one or more associations or until all distinctive
categories have been explored.

If, in the end, no matching association has been found, the speaker may invent
a new form and adds the new form-meaning association to the lexicon. This is done
with a certain probability that has been set to 0.1 in the current experiment. If
this probability is too high, too much synonymy and polysemy will emerge in the
lexicon. If it is too low, the lexicon does not get off the ground fast enough (Vogt
2000b).

When an association is found or a new one is invented, the speaker utters its
form to the hearer. Although in animal or human communication this utterances
are transmitted physically and the robots may use radio communication, in the
current experiment this is processed on a PC where no physical transmission is

necessary.

4.5 Interpreting an utterance

When the hearer ‘receives’ the utterance, it will try to interpret this utterance in

relation to the distinctive categories of the topic. For this, the hearer searches its
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lexicon for associations of which the form matches the utterance and of which the
meaning matches one of the distinctive categories.

If there are one or more associations, the hearer will select that association
for which the association score is highest, regulated by the mentioned preference
criteria. In that case the observational game is considered successful. If there are
no associations found, the observational game is a failure and the lexicon has to
be expanded. The outcome of the game is signalled back to the speaker, so both

robots know the outcome.

4.6 Adapting the lexicon

Depending on the outcome of the game, the robots have various ways of adapting
the lexicon. They can expand the lexicon and they can adapt the association scores.
The invention of new forms has already been discussed, below follow the remaining

two adaptations:

Failure In case the hearer does not know the uttered form with respect to one of
the distinctive categories of the topic, the observational game is a failure and
the lexicon has to be expanded. In this case, the hearer adopts the form and
associates it with the distinctive categories of the topic. These associations
are added to the lexicon. In turn, the speaker lowers the association score of

the used association.

Success In case the observational game is a success, both robots increase the as-
sociation score of the used association and they laterally inhibit competing
associations. An association is competing when either its form is the same
as the uttered form, but not its meaning or vice versa. This latter adapta-
tion implements a preference for the agents that meanings have a one-to-one

relation with a form.

These adaptations, together with the cultural interactions, ensure a self-organisation
of the global lexicon. For a more detailed discussion on the self-organisation of lan-

guage games, see, e.g., (De Boer 2000; De Jong 2000).

5 Experimental results

Several experiments have been done with (variants of) the above model, for a de-
tailed report on the results of these experiments see (Vogt 2000b). This section

presents the results of one such experiment.
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For the experiments a data set of approximately 1,000 situations was recorded
beforehand. Each situation contains the sensory data of both robots’ sensing as
if they played one observational game. These situations are processed further off-
board on a PC. The recorded situations are fed to the segmentation, feature extrac-
tion, discrimination- and naming games, and they are re-used for playing 10,000
observational games. The experiment has been repeated for 10 runs with different
random seeds. (Thus assuring different initial conditions for each run.) As for each
observational game one robot is arbitrarily assigned the role of speaker, who ran-
domly selects a topic, the chance that the exact conditions of a game re-occurs is
small. It has been calculated that there are approximately 7,000 possible conditions.

From the acquired data set some statistics have been extracted. The a priori
success is calculated from the average context size and is scaled for the potential un-
derstandability. Statistics revealed that the average context size was 3.35 segments.
The potential understandability indicates an upper limit in the number of successful
games to be expected. As shown in figure 3, the robots do not always sense the
same spatial view and therefore cannot select the same topic. It has been calculated
from the recorded data set that in 80.5% of the games the robots do select the same
topic. Hence the a priori chance that the robots would randomly choose the same
segment as the topic is calculated to be 23.4%. This reveals another major limita-
tion of the minimal robots. Due to their minimal sensory and coordination abilities,
the robots fail to construct a coherent context properly. Given these statistics, the
remainder of this section presents the results of the experiment. First by looking

at quantitative results and then by looking at the quality of an emerged lexicon.

5.1 Quantitative results

The success of the experiment averaged over the 10 trials is presented with a number
of measures. The results are shown in figure 4. The plots in the left column, figures
(a), (c) and (e), show the results relating to the discrimination games. The plots
in the right column, figures (b), (d) and (f), show the results in relation to the

communication.

5.1.1 Discrimination games

The plot in figure 4 (a) shows the discriminative success (Steels 1996b), which is the
average number of successful discrimination games over the past 100 observational

games. Recall that a discrimination game is successful when the individual robot
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Figure 4: The measured success of the observational games. The figure shows (a) the
discriminative success, (b) the communicative success (upper line) and the actual
success (lower line), (c) the distinctiveness, (d) the specificity, (e) the parsimony

and (f) the consistency.
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was able to find distinctive categories in relation to the feature vector of the topic.
The figure shows that the discriminative success increases towards a value near 98%
within the first 1,000 observational games. This means the robots are very good in
constructing an ontology with which they can form distinctive categories of their
sensing.

The remaining measures relating to the discrimination game inspect the quali-
tative evolution of the ontologies. These measures are developed by De Jong (2000)
and are based on the information entropy introduced by Shannon (1948). Below fol-
lows a brief description of these measures; the equations to calculate these measures
can be found in (De Jong 2000; Vogt 2000b; Vogt in press).

Figure 4 (c) shows the distinctiveness. The distinctiveness is a measure for
inspecting the quality of the robots’ categorisation and indicates more or less how
uniquely the use of a meaning predicts its categorisation of a referent. So, if the
distinctiveness is high, the meanings a robot uses relate mostly to the same referent.
When it is low, the meanings are used for various referents. As figure 4 (d) shows,
from the moment the robots start to use distinctive categories in the observational
games they almost uniquely relate to a particular referent.

The parsimony indicates how consistent a particular referent is categorised with
a meaning. If the parsimony is high, a referent is consistently categorised by the
same meaning. Figure 5 (e) shows that the robots do not categorise each referent
consistently with the same meaning. In fact, the robots use many meanings in
the different observational games. It has been observed that in one experiment
the robots each used about 500 meanings to categorise no more than 4 referents!
This can be explained by the fact that the robots have many different views of
the referents, depending on, for instance, the robots’ locations, changing lighting
conditions and unreliability of the sensors. Although the parsimony is rather low,

the robots construct a small lexicon rather well as will be shown below.

5.1.2 Communication

The upper line of figure 4 (b) shows the communicative success (Steels 1996a). This
is calculated by averaging the number of successful observational games over the
past 100 games under the assumption that joint attention is established perfectly.
As can be seen, the success rate already exceeds 60% after a few hundred games.
After that it slowly increases to almost 95% after 10,000 games. In the last 5,000
games the communicative success is more or less stabilised. Recall that when the

speaker presents the feature vector of the topic to the hearer, the latter selects the
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feature vector that is most similar to the presented vector. But the hearer does not
always sense the topic, it only does in 80.5%. Thus the communicative success is
measured from the viewpoint of the robots, which is not objective. The lower line
of figure 4 (b) shows the actual success. This is measured by averaging over the
past 100 games the number of successful observational games where both robots
refer to the same light source. The actual success has a similar evolution as the
communicative success, but is about 20% lower. So, the actual success increases to
a value near the potential understandability and the robots learn to communicate
rather well.

The two remaining measures are, again based on the entropy measures intro-
duced by (De Jong 2000). These measures inspect the quality of the emerging
communication system. One of them - the specificity - indicates how uniquely the
use of a form refers to a particular referent. It is shown in figure 4 (d) that when
the robots use a particular name, they use it almost unambiguously to name one
referent. The specificity increases towards a value of 0.95 around which it stabilises,
meaning that the global lexicon reveals little polysemy.

The second measure concerning the quality of the lexicon is called the consistency
and is used to monitor how consistently the robots name a particular referent. The
consistency stabilises around 0.85 and is lower than the specificity. In this sense it is
similar to the parsimony, which is lower than the distinctiveness. This indicates that
the robots do not always use the same name in relation to a particular referent. But,
although the robots may use up to 500 different meanings, the number of names
that are used in a typical experiment is around 15 of which the robots tend to use
about 7 frequently and the other 8 seldomly.

These measures all indicate that the robots are capable of developing a grounded
and shared lexicon. The robots may use different meanings or forms to categorise
or name some referent, but when a meaning or form is used, they almost uniquely
refer to the same referent. This becomes clearer by looking at the formation of the

lexicon of one typical experiment in more detail.

5.2 Tracking the emergence of semiotic symbols

One way to inspect the emergence of semiotic symbols is to look at various com-
petition diagrams. A competition diagram can be used to monitor the evolution of
meanings and forms of an individual run.

Figure 5 shows the competition of forms that are used to name the various

referents (light sources). On the x-axis of the figure the number of observational
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Figure 5: The referent-form competition diagrams for light sources (a) L0, (b) L1,
(c) L2 and (d) L3 show the co-occurrence frequencies of the competing forms relative
to the occurrence frequency of the referents (y-axis). The frequencies are calculated
over every 200 observational games (x-axis). Note that elements that compete with
very low frequencies are left out for clarity. All graphs, except (b), show the results

of both robots r0 and rl.

games are shown. The y-axis shows the occurrence frequencies of forms that are
successfully used to name a referent relative to the occurrence of that referent. The
frequencies are measured over every 200 observational games.

The competition diagrams show that there are several forms competing to name
one referent. For referent L0 there emerges a winning form ‘haji’ after approximately
2,500 games, see figure 5 (a). At first ‘haji’ competes strongly with ‘loke’, which
already from the start wins to name L1 as shown in figure 5 (b). As a result, the
competing associations of ‘loke’ with meanings that refer to LO are laterally inhibited
more often than the associations with L1. This strengthens the competition of ‘haji’

to name L0 and both ‘haji’ and ‘loke’ become clear winners for light sources L0 and
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L1 respectively. Such competitions are very typical.

The competition for light source L2 is much harder, see figure 5 (¢). No clear
winning forms can be found; there are two forms ‘xihu’ and ‘keni’ that are frequently
used throughout the experiment. Note, however, that ‘keni’ is also a winning form
to name referent L3 as figure 5 (d) shows. Besides being a synonym for referent
L2, ‘keni’ has a polysemous relation with referents L2 and L3. Being both part of a
synonymous and polysemous relation is not necessarily related. Some symbols have
been observed upon inspection of the lexicon that are used either synonymous or
polysemous. (Note, by the way, that in all four graphs there is a lot of competition
going on at the bottom.)

Figures 6 (a) and (b) show the referent-meaning competition diagrams for ref-
erents L2 and L3 respectively. Like in the referent-form diagrams of figure 5, the
competition for light source L2 is strongest. The competition for L3 is less strong.
The meaning-form competition for meaning M12 in figure 6 (c) shows that ‘keni’ is
almost uniquely used to name M12. This seems to explain the winning competition
of ‘keni’ for L3. However, ‘keni’ is also in strong competition for meanings M28
and, to a lesser extent, M36, see figures 6 (d), (e) and (f).

It is possible to inspect the use of semiotic symbols differently by looking at a
semiotic landscape as shown in figure 7. In this figure some forms and meanings
occur that are not labeled in the competition diagrams. The lexicon clearly shows
that the number of meanings outnumbers the number of forms in relation to the
referents. So there is a tendency that the relationship between referent and form
becomes close to one-to-one (or more specific one-to-few), despite a strong one-to-

many relationship between referent and meaning, and between form and meaning.

6 Discussion

The experimental results show that minimal autonomous robots are capable of de-
veloping a shared set of semiotic symbols under the assumption that they are able to
establish joint attention. Although much better than chance, the (actual) commu-
nicative success® is lower than 80%. The robots tend to name referents consistently
over time. But there is still quite some polysemy and synonymy, which destabilises
the lexicon at times. An important question is what factors are responsible for

the limited abilities of the minimal autonomous robots to develop a shared set of

4In the remainder of this paper, the term ‘communicative success’ is used rather than actual

success, because this term speaks better for itself.

21



08 1 08 M-21
0.6 [ 9 0.6 9
w w
0 { . .
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
LGs LGs
(a) L2 (b) L3
1 T T
H keni
0.8 [ i
06 i 1
w j w
0.4} i
0.2 9
0 . o A i 2 E /
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
LGs Gs
(c) M12 (d) M28
11— - - - - 1 - - - -
08 1
w w

8000

4000 6000
Gs

0 2000

4000 6000 8000 10000
Gs

(e) M36 () “keni’

Figure 6: Referent-meaning competition diagrams for referents (a) L2 and (b) L3,
the meaning-form competition diagrams for meanings (c) M12, (d) M28 and (e)

M36 and (f) the form-meaning competition for form ‘keni’.

22



LO L1l L2 L3

M-65 M-42 M-47 M-50 M-69 M-17 M-153 M-0 M-11 M420 M-33 M-28 M-32 M-36 M134 M2 M-55 M-12
N

haji

xi/k‘i/ kyjy loke paka xihu dysa hawe keni
haji xyki kyjy loke paka xihu dysa hawe keni

M=33 M-42 M-46 M-49 M55 M-26 M-13 M-16 M-30 M—1 M-38 M-11 M—20 M-21 M319 M451 M-56 M-78 M-50 M-28 M7 M-3 M-18 M-25

L0 L1 L2

Figure 7: A semiotic landscape of the same run as the competition diagrams. The
landscape shows the relations between referents, meanings and forms of the two
robots. The line styles indicate the co-occurrence frequencies over the 10,000 games
of the form-meanings relative to the occurrence frequencies of forms and of the
referent-meanings relative to the referents. Bold lines indicate the winning asso-
ciations. Thin continuous lines show associations with a relative frequency higher
than 5%. Dashed lines show associations with a relative frequency between 0.5 and

5%. Associations that are less frequently used are left out for clarity of the graph.

semiotic symbols? And also to what extent is the experiment scalable with respect
to the size of the lexicon?
A number of physical factors were found to limit the cognitive abilities of the

robots. The factors that appear to be most crucial are:

1. The robots’ sensors are subject to a lot of noise.
2. The robots have limited sensory abilities.

3. The environment is very limited.

4. The robots have poor sensorimotor skills.

5. The robots fail to construct a coherent context.

6. The robots fail to establish joint attention physically.

The first factor has the consequence that the sensation of a light source can
differ a lot on various occasions, even when viewed from more or less the same
location. This leads to many different categorisations of the light sources and, in

turn increases the complexity of communication. It is therefore one of the sources
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of synonymy and puts pressure on the communicative success. Nevertheless, the
self-organising mechanism of the observational game reduces the number of forms
that are used significantly (figure 7). The experiment with the AIBO too revealed
many different categorisations (or stored views) of referents (Steels and Kaplan this
issue). Steels and Kaplan mention the changing lighting conditions as the source of
inconsistent views rather than noise in the sensor. To overcome the problem they
use a deliberate classification method for learning the words of the many views,
instead of the implicit mechanism used here.

Factors 2 and 3 are probably most important with respect to the size of the
lexicon. Four light sources are, of course, very limited for a realistic ecosystem.
The same holds for robots with only four light sensors to detect their environment5.
However, the objective of this experiment was not to investigate the emergence of
semiotic symbols in a realistic setting, but rather to investigate the limitation of
this emergence using minimal autonomous robots.

One important question is to what extent the lexicon can be expanded? Adding
more objects to the environment without changing the robots would not work.
Perhaps a small increase in lexicon size can be established, but adding new light
sources to the environment reduces their distinctiveness. Experiments in which the
environmental distinctiveness was reduced, revealed that this has a negative effect
on the performance of the robots (Vogt 2000b). Adding more feature extraction
methods and, possibly, more or richer sensors on the robots will have a larger
impact. With more features robots are capable of constructing a richer repertoire
of distinctions such as spatial relations, distance, colour, etc. This would also allow
the environment to be expanded. An increasing repertoire of features, however,
may require a different categorisation method than the discrimination game. Steels
and Kaplan (this issue) report that their categorisation method does not work with
a large number of features.

Factor 4 - having poor sensorimotor skills - contributes for a great deal to the
causes of factors 5 and 6. Poor sensorimotor skills reduces the capability of the
robots to coordinate their actions, which is a requirement to construct a shared
context and to establish joint attention. Improved sensorimotor skills would allow
the robots to set up more ideal conditions to view their environment similarly. Also

the precondition of facing each other perfectly before pointing in order to establish

5 Although, the robots also have infrared sensors and bumpers, these are not directly used to
form semiotic symbols and thus do not influence the size of the lexicon. These are therefore left

out in the current discussion.
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joint attention (see section 4.2) would be reached more often.

The robots’ inability of reaching a shared context or joint attention - factors
5 and 6 - has a more fundamental cause. When humans notice that they fail to
construct a shared context or establish joint attention, they immediately search for
the missing information. Such adaptations require some form of theory of mind
(Bloom 2000) or the ability to reason about the intentions of a speaker (Tomasello
1999). Failures of this kind are always revealed by the hearer when it is unable to
identify the speaker’s topic. When such failures occur, the hearer has to rescan its
environment to search for the missing information. For this it would most probably
move from its place as the speaker might block its view. Besides having the proper
reasoning mechanisms, the robots will need to have better sensorimotor skills to
solve these problems.

That factors 4, 5 and 6 are typical for minimal autonomous robots can be inferred
from related work. The AIBO, which is in a sense a minimal autonomous robot
too, also has unreliable sensorimotor skills. It has no ability to establish joint
attention to most of the objects, except for the red ball (Steels and Kaplan this
issue). The human has to push the object in front of the AIBO or has to watch
carefully when the AIBO is looking at the object. Except for the red ball, the
ATBO has no mechanism to establish attention on objects. Build in mechanisms
cause the ATBO to track red objects, but even then it can loose track of the ball.
Billard and colleagues have also faced the same problems. In their experiment, a
student robot learns the lexicon from a teacher robot while following this teacher
robot and communicating with it (Billard and Hayes 1997; Billard and Dautenhahn
1999), see (Vogt 2000a) for a similar experiment. In their experiments the level of
success is similar to the ones presented here, and they argue that the main cause of
failures came from the robots inability to construct a shared context (Billard and
Dautenhahn 1999). When the interactions were done with a human experimenter as
teacher, the success rate increased because the human adapts its context by carefully
monitoring the robot’s behaviour. When more reliable and controlled robots, such
as the Talking Heads are used, the problems of factors 4, 5 and 6 are reduced and
the performance improves (Steels et al. 2002).

The question remains whether establishing joint attention during the observa-
tional game is a necessary strategy? In Western cultures children are taught a lot
of novel novel words by, for instance, pointing at an object and saying its name.
However, in non-Western cultures, there is evidence that infants learn their first

words while no joint attention is established (Lieven 1994).
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An alternative would be that children receive corrective feedback on their use
of word-meanings. This is what happens in the guessing game that has also been
implemented on the minimal autonomous robots (Vogt 2000b; Vogt 2001; Vogt in
press). These experiments reveal that the guessing game is at least as good as
the observational game. In the observational game a high level of communicative
success is established faster, but the lexicons emerging from the guessing game reveal
less synonymy and polysemy. The the observational is faster is consistent with the
observation reported in (Tomasselo and Todd 1983) that children tend to learn faster
when joint attention is established than when not. The way corrective feedback
has been implemented, however, is similar to the way joint attention has been
implemented, namely by inspecting each other’s internal states. For the guessing
game factor 6 would be changed in: “The robots fail to evaluate corrective feedback
physically.” For a comparison between the observational game and the guessing
game, see (Vogt 2000b; Vogt 2001).

Like there is negative evidence for joint attention as a necessity for learning the
meaning of words, there appears to be negative evidence for corrective feedback as
well (Bloom 2000). Another alternative would be to see if a lexicon can emerge
without using either joint attention or corrective feedback. Such a game has been
implemented as the selfish game on the minimal autonomous robots (Vogt 2000b).
In this selfish game, the hearer guesses the meaning of the speaker’s utterance as in
the guessing game. But instead of using corrective feedback to adapt the lexicon,
the robots keep track of the co-occurrence between meaning and form. These co-
occurrence frequencies then determine the selection of associations.

However, experiments with the selfish game on the minimal robots yielded very
poor results (Vogt 2000b). The performance of the robots was not better than
chance, because the selfish game can only work when there is enough variation
in the context. If the context does not vary enough, the co-occurrence frequency
of word-forms with meanings is distributed more or less equally and the robots
have no consistent criterion for selecting the proper associations. Yet unpublished
simulation experiments reveal that when the environment of the agents is richer
and there is sufficient variation in the context, the selfish game does work. See also
(Smith 2001) for simulations with a similar model. Still the communicative success
is both lower and stabilises slower than in the observational and guessing games.
Again, this result is consistent with the observation of Tomasselo and Todd (1983).

The experiments might, at least to some extent, shed light on why other species

that humans have no learned symbolic communication system. The first three fac-
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tors might explain why lower animals such as ants have limited communication
systems. The more an animal can distinguish, the more information it can acquire
from its interaction with the environment and the more information can be commu-
nicated. It certainly explains why species with different sensory capabilities have
different communication systems. This does not explain, for instance, why blind
sighted people can learn language equally well as sighted humans. But blind people
do have other sensory capabilities and they probably have an ability to form ab-
stract concepts concerning, e.g., colours. The limited sensory abilities also does not
explain why nonhuman primates such as bonobos have a limited ability to develop
a symbolic communication system.

The experiment shows that poor sensorimotor skills are sources of erroneous
communication (factor 4). Especially since they result in poor physical coordination
during their interactions to reach a shared context (factor 5) and joint attention
(factor 6). Although lower species, such as ants do reveal coordinated behaviours,
these are often limited and less complex and less fluent than those exposed by
humans. Lower animals lack a rich repertoire of coordinated behaviour skills, which
humans do have. Like, for instance, follow an eye-gaze, grasp things, point with
their fingers etc.

The sensorimotor skills of nonhuman primates are better than those of lower
species. This is perhaps a reason why bonobos can learn a limited number of
symbols through intensive interactions and reinforcements given by humans. The
reason why they fail to develop symbolic communication systems at a large scale
has possibly to do with the lack of a capability to understand that other conspecifics
also have intentions (Tomasello 1999). Having this capability would allow species

to share attention on something, which is necessary to bootstrap grounded symbols.

7 Conclusion

This paper investigated crucial physical conditions that minimal autonomous robots
need to bootstrap grounded symbols. The robots are minimal with respect to their
physical architecture and their environment. The robots’ bodies are far more simple
then living animals, especially those animals that are known to communicate in
symbols. The cognitive architecture, on the other hand, allows the robots to develop
symbols.

The experiments revealed that the robots can develop a shared lexicon when

they interact with a physical environment, have the proper learning mechanisms
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and have sufficiently adapted bodies. Acquiring knowledge by interacting with the
environment and learning through self-organisation are core principles of situated
cognition and requires embodiment (Clancey 1997; Pfeifer and Scheier 1999).

The extend in which lexicons can be developed depends heavily on the physical
abilities of agents. Both minimal sensing abilities and a minimal environment form
a major limitation on the size of the lexicon. It is extremely important that robots
are equipped with reliable sensors from which they can extract features that con-
tain invariant information. Also having poor sensorimotor skills appear to be an
important drawback in the ability to develop large and shared lexicons - especially
as the robots have difficulties to construct a shared context or fail to establish joint
attention, which are both necessary to bootstrap the lexicon.

The poor ability of the robots to agree on the reference of speakers’ utterances
is problematic. To improve this the robots would probably require something as a
theory of mind to form beliefs about speakers’ intentions. Investigations how such
a theory of mind can be designed or - better - evolved and/or learned should be the
next challenge in the research on bootstrapping grounded symbols in autonomous
robots; preferably not in minimal autonomous robots as these are too limited in

order to scale up a lexicon.
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